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Session -1
1. Introduction: Structures of FIR
	Filter Structures for FIR filters - the Signal Processing and Speech ...
Suggested Activity: Introduces	
2.  Direct form, cascade and linear phase realization
Suggested Activity: problem solving
3. Conclusion: Rapid fire 
The transfer function of an FIR filter is defined as follows:
[image: http://zone.ni.com/images/reference/en-XX/help/371325F-01/equ_fir_transfer_function.gif]
where z is a complex variable, M is the filter order, and h is the set of filter coefficients.
http://zone.ni.com/reference/en-XX/help/371325F-01/lvdfdtconcepts/fir_filter_specs/
FIR Direct Form
For FIR filters, the FIR Direct Form structure is the most straightforward structure from a filter transfer function perspective. The following figure represents the FIR Direct Form structure. The number of delays equals the filter order. Refer to the Understanding Filter Structure Graphs topic for information that helps you read and understand a filter structure graph.
[image: http://zone.ni.com/images/reference/en-XX/help/371325F-01/fir_direct_form.gif]
[bookmark: transposed]FIR Direct Form Transposed
The FIR Direct Form Transposed structure is the alternate direct form implementation for FIR filters. The following figure represents the FIR Direct Form Transposed structure.
[image: http://zone.ni.com/images/reference/en-XX/help/371325F-01/fir_direct_form_transposed.gif]
		Both direct form structures contain the same number of delays. However, in the FIR Direct Form structure, the word length of the delays equals that of the input signal x[n]. In the FIR Direct Form Transposed structure, the word length of the delays equals that of the accumulator. In most cases, the word length of the input signal is less than the word length of the accumulator. Therefore, the FIR Direct Form structure requires less memory for saving internal states than the transposed structure.
		Both direct form structures also contain the same number of multipliers, which equals M+1. However, if you perform the multiplications in parallel and then perform summations on the multiplication products for both structures, the FIR Direct Form Transposed structure has better timing performance because the delays following the adders in this structure can store the summation results temporarily for performing the summations in parallel. However, the FIR Direct Form structure does not contain delays for the adders so the summations in this structure take more time. If you perform the multiplications and additions serially using a loop structure, the FIR Direct Form structure is more efficient because this structure requires less memory.








[bookmark: symmetric]	Session -2
1. Introduction: Linear phase filters 
	Suggested Activity: Introduces	
Linear phase - Wikipedia, the free encyclopedia
http://www.astro.rug.nl/~vdhulst/SignalProcessing/Hoorcolleges/college08.pdf
	Linear phase is a property of a filter, where the phase response of the filter is a linear function of frequency, excluding the possibility of wraps at [image: \pm\pi]. In a causal system, perfect linear phase can be achieved with a discrete-time FIR filter.
	Since a linear phase (or generalized linear phase) filter has constant group delay, all frequency components have equal delay times. That is, there is no distortion due to the time delay of frequencies relative to one another; in many applications, this constant group delay is advantageous. By contrast, a filter with non-linear phase has a group delay that varies with frequency, resulting in phase distortion.
	A filter with linear phase may be achieved by an FIR filter which is either symmetric or anti-symmetric. A necessary but not sufficient condition is [image: \sum_{n =-\infty}^\infty h[n] \cdot \sin(\omega \cdot (n - \alpha) + \beta)=0] for some [image: \alpha, \beta]
2. Symmetric and anti symmetric FIR filters
http://zone.ni.com/reference/en-XX/help/371325F-01/lvdfdtconcepts/fir_filter_specs/
FIR Symmetric
		Use the FIR Symmetric structures for symmetric linear phase FIR filters, which use the symmetry of the filter coefficients to reduce the number of multipliers from M+1 to M/2+1, when M is an even number, or (M+1)/2, when M is an odd number. The following figure represents the FIR Symmetric structure when the filter order is an even number.
[image: http://zone.ni.com/images/reference/en-XX/help/371325F-01/fir_direct_form_sym_evenord.gif]


The following figure represents the FIR Symmetric structure when the filter order is an odd number.
[image: http://zone.ni.com/images/reference/en-XX/help/371325F-01/fir_direct_form_sym_oddorde.gif]
[bookmark: antisymmetric]FIR Anti symmetric
		Use the FIR Anti symmetric structure for anti symmetric linear phase FIR filters, which use the anti symmetry of the filter coefficients to reduce the number of multipliers from M+1 to M/2, when M is an even number, or (M+1)/2, when M is an odd number. The following figure represents the FIR Anti symmetric structure when the filter order is an even number.
[image: http://zone.ni.com/images/reference/en-XX/help/371325F-01/fir_direct_form_antisym_2.gif]
The following figure represents the FIR Anti symmetric structure when the filter order is an odd number.
[image: http://zone.ni.com/images/reference/en-XX/help/371325F-01/fir_direct_form_antisym.gif]

	Suggested Activity: problem solving
3.       Symmetric and  N –odd & even
		Suggested Activity: writing board
4.  Conclusion: Brain storming 
			Questions:
a. Define FIR.
b. Advantages of FIR
c. Disadvantages of FIR.





Session -3
1. Recap: Linear phase filters	
Suggested Activity: Questions	
2.  Anti symmetric and N is even & odd
Suggested Activity: chalk and talk 
3. Conclusion: Questions and answers 
Questions:
a. What are linear filters?
b. Write the expression for frequency response for h(n) is symmetric and Nis even & odd.
c. Define phase delay
d. What is group delay?

















Session -4
1. FIR filter using window techniques:	
http://www.ece.uvic.ca/~andreas/ISCASTutorial/Part%201-FIR%20Filters-Window%20Method.pdf
http://www.youtube.com/watch?v=1N94cQYPZmU
Suggested Activity: Quizzing and formulas
2.  Characteristics and frequency response of the window function
Suggested Activity: PPT
3. Conclusion: Brain storming































	 Session -5
1. Recap: window function
Suggested Activity: mind map	
2.  Rectangular and hamming window
http://www.ijarcsse.com/docs/papers/June2012/Volume_2_issue_6/V2I600260.pdf
Suggested Activity: presentation and formulas
3. Conclusion: board activity 
[image: ]















	Session -6
1. Recap: Rectangular window	
Suggested Activity: formulas	
· 	How to reduce the Gibbs phenomenon?
(1 )Narrow main lobe width
(2)Side lobe energy decrease to zero when w reaches
[image: ]



2.  Hanning and blackmann window
Suggested Activity: chalk and talk
[image: ]

[image: ]
3. Conclusion: board activity 















 Session -7
1. Recap: hamming window	
[image: ]
Suggested Activity: mind map	
2.  Kaiser and Barlett window
Suggested Activity: board
http://my.safaribooksonline.com/book/electrical-engineering/communications-engineering/9780132598804/fir-filter-design/ch36
Perform the following steps to approximate the ideal lowpass filter response.
1. Based on the intended application, determine the following:
· the normalized passband edge frequency, λP
· the normalized stopband edge frequency, λS
· the maximum tolerable passband ripple, δP
· the maximum tolerable stopband ripple, δS
2. Determine the transition width, Δλ, as
Δλ = λs – λp
3. Set δ equal to the smaller of δP or δS, and compute A as
A = –20log10δ
4. Use the value of A computed in step 3 to determine the value for β[*] as
5. Determine the required number of taps, N, as
6. Compute the window coefficients as
7. For , compute h[n] and h[N – 1 – n] as
where m = n –(N – 1)/2.
8. If N is odd, compute h[(N – 1)/2] as
9. Check the filter response against the conditions specified in step 1. If the filter meets the specified conditions, the design is complete. If the filter response does not meet the specifications, increase N by 1, and return to step 6.
3. Conclusion: problem solving 

Session -8
1. Introduction: Frequency sampling techniques
De sign FIR Filter by the Frequency Sampling Method Introduction ...  
	The Frequency Sampling Technique In this method, [Park87], [Rab75], [Proakis00] the desired frequency response is provided as in the previous method. Now the given frequency response is sampled at a set of equally spaced frequencies to obtain N samples. Thus, sampling the continuous frequency response Hd(w) at N points essentially gives us the N-point DFT of Hd(2pnk/N). Thus by using the IDFT formula, the
filter co-efficient can be calculated using the following formula h(n)=Now using the above N-point filter response, the continuous frequency response is calculated as an interpolation of the sampled frequency response. The approximation error would then be exactly zero at the sampling frequencies and would be finite in frequencies between them. The smoother the frequency response being approximated, the smaller will be the error of interpolation between the sample points. One way to reduce the error is to increase the number of frequency samples [Rab75]. The other way to improve the quality of approximation is to make a number of frequency samples specified as unconstrained variables. The values of these unconstrained variables are generally optimized by computer to minimize some simple function of the approximation error e.g. one might choose as unconstrained variables the frequency samples that lie in a transition band between two frequency bands in which the frequency response is specified e.g. in the band between the pass band and the stop band of a low pass filter.
Suggested Activity: Introduces	
http://www.ee.iitb.ac.in/~esgroup/es_mtech02_sem/es02_sem_rep_arojit.pdf
2. Procedure and problems
Suggested Activity: problem solving
3. Conclusion: Tit for tat

	Session -9
1. Introduction: finite word length effects	
Suggested Activity: Introduces	
Finite Word length Effects - 
· Finite register lengths and A/D converters cause errors in:-
		(i) 	Input quantisation.
		(ii)	Coefficient (or multiplier) quantisation
		(iii) Products of multiplication truncated or rounded due to machine length 
2.  Rounding and truncation
Suggested Activity: board activity
		With finite precision the response does not converge to the origin but assumes cyclically a set of values –the Limit Cycle
· 	For rounding operations q(n) is uniform distributed where Q is the quantisation step (i.e. in a word length of  bits with sign magnitude representation or mod 2             
· 	A discrete-time system with quantisation at the output of each multiplier may be considered as a multi-input linear system
[image: ]
3. Conclusion: brain storming 
Questions:
a. What is quantization?
b. Define rounding
c. Define truncation
d. What do you meant by quantization noise?
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Fig. 7.1 Block diagram of AD converter.

Let us assume a sinusoidal signal varying between +1 and —1 having a dynamic
range 2. If ADC is used to convert the sinusoidal signal it employs (b + 1) bits
including sign bit, the number of levels available for quantizing z(n2) is 21, Thus
the interval between successive levels is

= .3)

where g is known as quantization step size.
I£b =3 bits then g = 273 = 0.125
The common methods of quantization are

1. Truncation,

2. Rounding,
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